3.2.89 \(\int \frac {(a+a \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [189]

Optimal. Leaf size=158 \[ \frac {4 a^2 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {4 a^2 (2 A+3 B) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}-\frac {2 a^2 (A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

2/3*A*(a^2+a^2*sec(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(1/2)-2/3*a^2*(A-3*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d+4*a^2*A
*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*
x+c)^(1/2)/d+4/3*a^2*(2*A+3*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^
(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 158, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {4102, 4082, 3872, 3856, 2719, 2720} \begin {gather*} -\frac {2 a^2 (A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d}+\frac {4 a^2 (2 A+3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 A \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(4*a^2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (4*a^2*(2*A + 3*B)*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) - (2*a^2*(A - 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/
(3*d) + (2*A*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4082

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Dist[1/(n + 1), Int[(d
*Csc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e,
 f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 4102

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx &=\frac {2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2}{3} \int \frac {(a+a \sec (c+d x)) \left (\frac {1}{2} a (5 A+3 B)-\frac {1}{2} a (A-3 B) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx\\ &=-\frac {2 a^2 (A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4}{3} \int \frac {\frac {3 a^2 A}{2}+\frac {1}{2} a^2 (2 A+3 B) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx\\ &=-\frac {2 a^2 (A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\left (2 a^2 A\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (2 a^2 (2 A+3 B)\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=-\frac {2 a^2 (A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\left (2 a^2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (2 a^2 (2 A+3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {4 a^2 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {4 a^2 (2 A+3 B) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}-\frac {2 a^2 (A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 3.09, size = 299, normalized size = 1.89 \begin {gather*} \frac {a^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) (1+\sec (c+d x))^2 (A+B \sec (c+d x)) \left (\frac {i \sqrt {2} \cos ^3(c+d x) \left (3 A \sqrt {1+e^{2 i (c+d x)}}+3 A \left (-1+e^{2 i c}\right ) \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )-(2 A+3 B) e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}}}+\frac {-3 (2 A-B) \cos (d x) \csc (c)-3 (2 A+B) \cos (2 c+d x) \csc (c)+A \sin (2 (c+d x))}{4 d \sec ^{\frac {5}{2}}(c+d x)}\right )}{3 (B+A \cos (c+d x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(a^2*Sec[(c + d*x)/2]^4*(1 + Sec[c + d*x])^2*(A + B*Sec[c + d*x])*((I*Sqrt[2]*Cos[c + d*x]^3*(3*A*Sqrt[1 + E^(
(2*I)*(c + d*x))] + 3*A*(-1 + E^((2*I)*c))*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] - (2*A + 3*
B)*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*(-1 + E^((2*
I)*c))*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]) + (-3*(2*A - B)*Cos[d*x]
*Csc[c] - 3*(2*A + B)*Cos[2*c + d*x]*Csc[c] + A*Sin[2*(c + d*x)])/(4*d*Sec[c + d*x]^(5/2))))/(3*(B + A*Cos[c +
 d*x]))

________________________________________________________________________________________

Maple [A]
time = 1.34, size = 245, normalized size = 1.55

method result size
default \(-\frac {4 a^{2} \left (2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) A +2 A \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}-3 A \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}-3 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 B \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(245\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-4/3*a^2*(2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*A+2*A*EllipticF(
cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)-3*A*EllipticE(cos(1/
2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)-3*B*cos(1/2*d*x+1/2*c)*sin
(1/2*d*x+1/2*c)^2+3*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.81, size = 166, normalized size = 1.05 \begin {gather*} -\frac {2 \, {\left (i \, \sqrt {2} {\left (2 \, A + 3 \, B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} {\left (2 \, A + 3 \, B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} A a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} A a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (A a^{2} \cos \left (d x + c\right ) + 3 \, B a^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-2/3*(I*sqrt(2)*(2*A + 3*B)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - I*sqrt(2)*(2*A + 3
*B)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*A*a^2*weierstrassZeta(-4, 0, w
eierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*A*a^2*weierstrassZeta(-4, 0, weierstra
ssPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (A*a^2*cos(d*x + c) + 3*B*a^2)*sin(d*x + c)/sqrt(cos(d*x +
 c)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a^{2} \left (\int \frac {A}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {2 A}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int A \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \frac {B}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int 2 B \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \sec ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(A+B*sec(d*x+c))/sec(d*x+c)**(3/2),x)

[Out]

a**2*(Integral(A/sec(c + d*x)**(3/2), x) + Integral(2*A/sqrt(sec(c + d*x)), x) + Integral(A*sqrt(sec(c + d*x))
, x) + Integral(B/sqrt(sec(c + d*x)), x) + Integral(2*B*sqrt(sec(c + d*x)), x) + Integral(B*sec(c + d*x)**(3/2
), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^2)/(1/cos(c + d*x))^(3/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^2)/(1/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________